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A generalization of the two-step Richtmyer [7] method is derived for the solution of 
first-order systems of conservation laws. It is analysed with respect to stability and 
dissipation for the purpose of giving good solutions to shock problems. Applications 
to smooth, discontinuous, and physical problems are described briefly. The extension 
of the method to systems of equations in two space dimensions is achieved through 
Strang’s formulation [19]. 

1. INTRODUCTION 

In this paper we consider finite difference methods for the solution of systems 
of conservation laws 

g+g=o, 
where f =f(u) and u = u(x, t) is a vector function (ur , u2 ,..., QT. We consider 
the equation to be defined in (0 < x < a) x (0 < t < T) and assume initial 
conditions 

4% 0) = U”(X) (1.2) 

are given on 0 < x < fx 
We further assume that A(u) = af/ au, the Jacobian off with respect to u, has 

positive eigenvalues, so that boundary conditions 

40, 0 = at) (1.3) 
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are given. Under these assumptions (1 .l) with the extra conditions (1.2) and (1.3) 
is a well posed problem in the given region. 

If the differentiation off is carried out in (I. 1) we obtain 

For problems of the form (1.4) which have smooth solutions Strang [l] showed 
that, as regards convergence of difference schemes, there was very little difference 
between the nonlinear case (1.4) and the variable coefficient case in which A 
depends on x and t but not on u. The case in which u(x, t) has discontinuities is 
much more difficult to analyze. The best point of view from which this problem 
can be attacked seems to be that given by Kreiss and Widlund [2] where they 
consider the internal discontinuities as internal boundaries on which no informa- 
tion is given. Hence they reduce the problem to one in which wrong or no boundary 
data are given but is in all other respects a problem with a smooth solution. In [3] 
Kreiss and Lundquist considered this problem for both the constant and variable 
coefficient scalar cases and found that for a dissipative difference scheme the 
influence of the wrong boundary data could be confined to a narrow band near the 
boundary. In [4] Apelkrans treats the scalar variable coefficient problem with 
discontinuous initial data for the situation when one uses a difference scheme 
throughout incorporating no special treatment when a discontinuity is met and 
shows that again errors introduced by the discontinuity can be confined to a narrow 
band around the discontinuity provided the scheme is dissipative. However when 
the case of a system of hyperbolic differential equations is considered Apelkrans [5] 
gives some rather discouraging results proving that the effect of the discontinuity 
is in fact spread out over a fairly large region. From his results it thus seems, 
at least for systems, that it is probably best to do something special near a dis- 
continuity like “shock-fitting,” in order to reduce the spread in the discontinuous 
region. More recently in [6], for variable coefficient hyperbolic systems, Gustafsson 
has shown that if a finite difference method of order m is used at internal points and 
one of order m - 1 at the boundaries, then under certain assumptions the overall 
accuracy of order m is maintained. Thus considering the discontinuity as an 
internal boundary, the use of a second-order method throughout the region 
means that at this boundary we only have a first order method. However 
Gustafsson’s theory shows that under certain assumptions, the scheme may still 
be second-order accurate away from the discontinuity. 

In this paper we consider the use of Lax-Wendroff (LW) type methods for the 
solution of systems of conservation laws (1.1). We describe a generalization of the 
two-step Richtmyer [7] version of the Lax-Wendroff method in Section 2. The 
dissipative properties both linear and nonlinear are discussed along with the 
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stability of the generalized scheme in Section 3. Numerical experiments were 
conducted using the subject methods. The relevant results are reported briefly in 
Section 4. The extension of the one-dimensional scheme to systems of conservation 
laws in two space dimensions is considered in Section 5. The paper is concluded 
in Section 6. 

2. GENERALIZED LW SCHEME 

Second order schemes approximate, correct to second order, the Taylor series 
expansion of1 ur+l = u(ih, (m + 1)K); that is 

.:+I + O(K3). (2.1) 

Different ways of replacing the time derivatives by space derivatives using the 
differential equations (1.1) give different schemes. In replacing the time derivatives 
care must be taken not to introduce the Jacobian A(u) = afiau into (2.1) since 
then inefficient algorithms like the original LW scheme will result. 

In this section, a generalization of the two step Richtmyer scheme [7] is introduced 
by using an intermediate approximation to u(i/i, (m + 2u)K) as was done in [IO]. 
We write (2.1) as 

.y+1 = uim+K(l -A)% +~;(~++)~+O(K3) (2.2) I 

(2.3) 

Using (1.1) in (2.3) then gives 

up+1 = u<m-K(l --!-5;q+O(K3), (2.4) 

with 

$+*a = ui” - 2aK g + O(P), 

and whereLf;,” meansf(@). 
Replacement of the space derivatives by differences which do not destroy the 

orders of accuracy of the first terms on the right hand sides of (2.4) and (2.5), 

1 h is the grid spacing, K the step size and p = K/h is the mesh ratio. 
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and which give a scheme in which values at only (i, m), (i i. 1, m) are involved, 
results in the scheme 

*m+1 
oi = 4(4il,2 + dh) - ~~PKJI,, -fim_1A (2.6) 

m+1 
wi = uim - f [(l - A) (h'$ -fE,) + & &% -i%)], (2.7) 

where wjm is an approximation to uim. and&I” meansf(wi”). In (2.6), (2.7), as in [lo], 
Wt l m+1 is a first-order approximation to u(ih, (m + 2a)K); a = i gives the two-step 
Richtmyer scheme; and a = + gives the scheme introduced by Rubin and Burstein 
in [9]. Applied to linear problems with constant coefficients (2.6), (2.7) reduces 
to the LW method and hence has optimal linear stability (see [8], p. 304) as allowed 
under the Courant-Friedrichs-Lewy condition [l 11, that is 

Plhl d 1, (2.8) 

where 1 X 1 is the maximum modulus eigenvalue of A. In [IO], the difference opera- 
tors were chosen in such a way that points other than (i, m), (i + 1, m) were used 
in the evaluation of ,y+l so that a more restrictive (linear) stability condition than 
(2.8) was obtained. 

In their study of third-order methods, Burstein and Mirin [12] considered 
equations which were constituent steps of a third-order method and which were 
similar to Eqs (2.6) and (2.7). 

3. DISSIPATIVE PROPERTIES OF THE GENERALIZED SCHEME 

In this section we look at the dissipative properties of (2.6) and (2.7), and as 
a result try to indicate how one should choose the parameter a. 

Performing the usual Fourier analysis on the linearized version of (2.6) and (2.7), 
which reduces to the LW method, shows that (2.8) is sufficient as well as necessary 
for stability [S, p. 841. Also, (see [8, p. 1091) the scheme is, in the linearized case, 
dissipative of order 4 provided 

O<plhl <l. (3-l) 

Since the linearization of (2.6) and (2.7) eliminates a, we will turn to an analysis 
of the truncation error terms to decide what effect a particular value of a has on the 
values given by the scheme. To examine the truncation error we must assume 
that u and f have as many bounded derivatives as are involved in the expression 
for the truncation error. 
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Applying the operator of (2.6) at x = i/z and denoting it by L,* we have 

L *up = uin - 2aK ax 2aP 
z 

?P+$2 a;zn -&3!?g 
+ O(h4), (3.2) 

where fin meansf(ui”). Thus since the coefficient of h3 in (3.2) is smooth, 

a%." 
- 2a2p2 -$-- 

+ jg am9 
~ + O(h4), 24 ax3 

where we have used (1.1) and where af/iau means the Jacobian off. Hence, applying 
the operator of (2.7) at x = ih and denoting it by L, , we have 

afiT" K2 a2p Kh2 a”f,” ---~--- L&q = uin - K ax 
2 atax 6 ax3 

a22p t .- 
ax2 ) 

-_ ~-~ . $1 + O(hJ), 

where again (1.1) has been used. 
Now using the fact that 

(3.4) 

(3.5) 

and similarly for differentiation with respect to t, we have that 

w K2 a2& __---- .L%u~~ = uin - K ax 
2 atax 

-~~[~(~).~~:‘+O(h4). (3.6) 

Thus 

.y+1 - 

+ A$?& 1; ($) . $: + 7% + O(h4). (3.7) 
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then the scheme (2.6), (2.7) is third order accurate for solutions to 

au at + g = h'Q(u). 

(3.8) 

It is to be noted that truncation error is usually defined in terms of K and h as 
h + 0 and thus the above is only meaningful if we consider some small fixed value 
of h. However in the implementation of any finite difference method this is exactly 
what is done. 

Thus what we have established is that the solutions of the difference scheme 
(2.6,2.7) are closer approximations to the solutions of (3.9) than (1.1). 

It is noted that the truncation error of the scheme (2.6), (2.7) applied to (1.1) is 
in fact given by 

--a2 II Q(u>ll + Wh3). (3.10) 

In the linear case, of course, Q(U) reduces to 

f &PA2 - I) tg 7 (3.11) 

and so the differential equation (3.9) reduces to one in which only odd ordered 
derivatives appear and is hence a dispersive (nondissipative) system of differential 
equations. The dissipation in the Lax-Wendroff method in this case comes from 
the 0(fi3) terms in the truncation error of (3.10). If we write the KO(h3) terms of L, 
applied at x = ih as Q’u then from [8, p. 3321, we have 

1 ak Q'u = gA2(p2A2 - 1) G. 

In [13], Vreugdenhill has analysed the exact solutions of equations such as (3.9) 
and (3.9) with Q’u added to its right hand side for the case of a scalar equation 
with a step function as initial data. He found that the numerical solution obtained 
from a second order method was closer to the solution of such equations, with Q’u 
added than to the solution with only Qu. 

It is extremely difficult to determine exactly what effect the nonlinear term in 
(3.9) has on the solutions of (3.9). Consequently we must make an approximation. 
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We have already discussed the case of taking 8f/!flau = A, constant. This however 
meant elimination of the parameter a. 

Considering the form of (3.8), we go one stage further and consider a local 
linearization of A by taking 

= B, constant; 

= C, constant. 

Equation (3.13) means that we take 

af 
au = A + B(x - x,) f C(t - te) 

(3.13) 

locally around the point (x, , t,) where A is af/lau evaluated at (x, , t,). The approx- 
imation (3.14) is assumed to hold in a small area surrounding (x, , te) just enough 
to include all the points involved in the finite difference scheme. Thus in applying 
the linearization (3.14) it is assumed that (x, t) is close to (x, , t,) so that 

x - x, = O(h), 

Then Q(U) from (3.8) becomes 

t - t, = O(K). (3.15) 

Q@)= -f!?+!.??+&B?&+-& (3.16) 

From (3.9) we have 

& + g = h2 & Q(u); 

:. & + $ (2 . g) = h2 & Q(u); 

... & + 2& (z) $ + $- . e = h2; Q(u). (3.17) 

Neglecting terms of O(h) we obtain 

azu -=z 
ax at 

-BaU-A?L 
ax ax2 * 

Substitution of (3.18) in (3.16) gives 

(3.18) 

p2 a3u r--e- 
6 at3 $$+ (&++A)$+~CB-&-. (3.19) 
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Now only the last two terms of (3.19) can be adjusted by the parameter a. Also 
only the first of these can be dissipative. Let us write 

D(u)u = I 1 UP2 32aB+2CA 
I 

a2t4 
=. (3.20) 

Thus D(a)u represents the only terms of Q(u) which are dissipative to our degree of 
approximation and can be adjusted by use of the parameter a. Unless the matrices 
of (3.20) are of a specially simple form, it is still extremely difficult to tell how one 
should choose a to give a dissipative term for (3.20). When u is a scalar it is of 
course an easy problem to decide what effect a will have. 

If (3.20) is to be a parabolic term in the sense of Petrowskii [see 14, p. 1301 then 
the eigenvalues of the matrix 

&B+$CA (3.21) 

must be positive. Further the term (3.20) will have a stronger dissipative effect the 
larger are the eigenvalues of (3.21). 

To find the eigenvalues analytically of (3.21) is an impossible task except in very 
simple cases. The scalar case is analysed in Section 4. The only possibility that one 
has is to adjust a so that the matrix (3.21) is diagonally dominant, which will then 
automatically ensure positive eigenvalues. One must also remember that the 
truncation error of the scheme (2.6) and (2.7) applied to (1.1) depends on the 
parameter a. Thus one must be careful not to choose values of a which will intro- 
duce large errors and hence nonlinear instabilities. A rough guide for this can come 
from the fact that &F+’ is a first-order approximation to uF+za of equation (1.1). 

Hence overall a suitable criterion for choosing a is difficult to find. Some analysis 
in this direction may be carried out for simple cases. This analysis along with 
computational experiments will help to indicate how a should be chosen in more 
difficult problems. 

4. SOME NUMERICAL EXPERIMENTS IN THE ONE DIMENSIONAL CASE 

EXPERIMENT 1. 

The first problem to be considered was Eq. (1.1) with f = fu” and U(X, 0) = x, 
which gives a problem with the smooth solution 

u(x, t) = X/(1 + t). (4.1) 

Exact boundary conditions were used on x = 0 and an extrapolation formula of 
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the type used in Gourlay and Morris [15] was used for values on x = 1. The 
solution of the problem was sought in the strip 

(0 < x e 1) x (t > 0). 

The local truncation error of the scheme (2.6) and (2.7) as given by (3.7) can be 
explicitly written as the norm of E,(x, t) where 

4(x, t> = (&4 --L- (a - 1) + KO(h3). 

It is obvious from (4.2) that to minimize the truncation error one should choose a 
close to unity. It is impossible to consider the damping effect of terms involving 
Pu/8x2 in the case of u given by (4.1), as we require to do when using our approx- 
imation (3.13), as in this case %/8x2 itself is zero. 

The results of solving (1.1) for the above mentioned initial and boundary values 
are given in Table I for a series of values of a at a series of values of p. From the 
table of errors it is easily seen that in fact a = 1 gives the greatest accuracy with 
accuracy decreasing the greater the distance of the parameter a from 1. However, 

TABLE I 

Errors at the point x = 0.5, h = 0.1, the errors being given after 100 and 300 time 
steps as [~~~~j]. All the entries are multiplied by lo-* 

a 

\ 0.0125 0.125 0.25 0.5 1.0 2.0 4.0 8.0 

!L \ 

0.3 * 
1912 1633 
+ve +ve 
366 312 

1075 42 2272 
tve -ve -ve 
206 7 433 

6726 15604 
-ve -ve 
1282 2978 

0.5 
2676 2280 1489 92 3247 9533 22002 

* +ve +ve Sue --Ye --ce --ce -ve 
421 359 235 13 509 1497 3460 

0.4 
3161 2687 1741 148 3913 11384 26105 

* +ve +ve +ve -ve -ve -ve -ve 
454 386 250 20 559 1630 3746 

1.0 
3655 3096 1980 242 4655 13350 30248 

* +ve tve +ve -ve -ve -ve -ve 
487 413 265 31 618 1777 4040 

Note that the sign of the errors changes as one passes across the value a = 1. 
* denotes non-linear instability had occurred prior to this time. 
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the stability analysis (linear independence of a) is confirmed by the results in that 
the range of a for which stability is maintained is considerable. 

Experiment 1 was also repeated for the smooth problems with 

24(x, t) = 
1 + 2xt - 1/l + 4xt 

2t2 
(4.lb) 

and 
u(x, 0) = x2, (4.2b) 

and also 
___- 

4x, t) = 
-t + z/t2 + 4x 

2 (4.lc) 

and 

#(X, 0) = dX. (4.2~) 

Both problems were run for a = 0.0125, 0.125,0.25,0.5, 1.0,2.0,4.0, 8.0 at values 
of p = 0.3, 0.5, 0.7, 1.0. Non linear instability occurred in both problems for 
a = 0.0125. A best value of a was seen to exist between 0.125 and 0.25 for problem 
(4. lb, 2b) and around 0.25 for problem (4. lc, 2~). The best value was also dependent 
to some extent on the value of p used in the computation. 

EXPERIMENT 2. 

In this experiment problem (1.1) was solved withf = &u2 but with discontinuous 
initial data 

u(x, 0) 
1 :, 0 < x < 0.1, = 

x 3 0.1. (4.3) 

The boundary datum 

u(0, t) = 1 (4.4) 

was given on x = 0 and an extrapolation technique as in experiment 1 was used 
on x = 1. The solution to the problem was sought on the strip (0 < x < 1) x (t > 0). 
This problem gives a solution in which the initial discontinuity of (4.3) propogates 
into the field of solution along the line x = 0.1 + 0.5t. In this problem, the 
difference scheme does not recognise the discontinuity on the line x = 0.1 + 0.5t 
but regards the solution as changing from I to 0 quickly as this line is crossed, 
in other words, we can regard the problem as one in which the solution is contin- 
uous but with a rapidly decreasing x derivative, at any given time, as the line 
x = 0.1 + 0.5t is crossed. Hence in the region of interest, namely around the 
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discontinuity au/ax is always negative and also au/at is always positive. Hence in 
this case for fixed x and t, (3.21) reduces to 

L-!-+~uA!k. (4.5) 

Hence it is obvious that the larger the value of a, the larger will be (4.5) at any 
fixed x and t. Thus for the greatest damping effect a must be chosen as large as 
possible. 

The problem stated was solved for a series of values of a for a series of values 
of p. The results were graphed and a typical example is shown in Fig. 1. The 

i F 
R-. 25, d. 0, 1. 0, 8.0, 14.0 

‘- . 7ocooooo H- . 01000000 
100 T- . 70000000 M- 

A I-- 

T 

FIGURE 1 

behaviour as regards damping was exactly as predicted away from values of p near 
the stability limit. Near the stability limit nonlinear instabilities disrupted the 
solution except for a very few values of a. However values of p near the stability 
limit with a reasonable value of a, a about 0.5 or 1, gave the best shock profiles. 

EXPERIMENT 3. 

The problem (1.1) was solved for the case of inviscid compressible flow of a gas 
as in [9]. Exactly the same equations as in [9] were used. A shock wave was set off 
along the x axis and its progress followed using the generalized LW scheme. 

581/11/4-6 
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The problem was carried out for a series of values of a at a series of values of p 
from 0.5 times the CFL limit to the CFL limit itself. The shape of the shock front 
as given by the density after various numbers of time steps were graphed for each 
of the values of a and p. 

In all cases the computed shock front occurred at exactly the point it should 
occur as calculated from the Rankine-Hugoniot conditions. It was also seen that 
the best shock profiles were given by taking a value of p close to the CFL stability 
limit along with a fairly large value of a. The value a = 1 with p = 1 .O or 0.95 times 
the CFL stability limit gave the best shock profiles. It was noted from the graphs 
that above a = 1.0 there was virtually no more dissipation introduced into the 
scheme as displayed in the shape of the shock profile. This was probably due to 
the fact that one of the eigenvalues of the matrix (3.21) in this case, was zero and 
the others must not have changed much with increasing a above 1.0. 

EXPERIMENT 4. 

In this experiment we used the problem of [9] in which two shock waves travelling 
in opposite directions collided. The shocks used were those of [9]. Computations 
were carried out for a series of values of a and p and the configuration of the shock 
shapes for the density after 400 time steps was graphed. Again as in experiment 3 
the best shock profiles were obtained by taking p close to the stability limit and 
choosing a fairly large value of a, around 1.0. Choosing values of a above 1 .O 
however gave virtually no improvement as regards damping of oscillations behind 
the shock fronts. 

5. THE EXTENSION OF (2.6),(2.7) TO PROBLEMS IN Two SPACE DIMENSIONS 

In this section we consider how to extend the formulation (2.6) and (2.7) to 
systems of conservation laws in two space dimensions viz 

(5.1) 

where f and g are functions of u only. Extending the method in the fashion of 
Gourlay and Morris [8] and Thommen [16] gives schemes which have restrictive 
stability conditions. The scheme used by Burstein in [17] is typical and has the 
stability (linearized) restrictions 

where 1 X(A)1 and 1 h(B)1 are the maximum modulus eigenvalues of the matrices A 
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and B respectively. Burstein points out however that this bound is rather a poor 
one so that the method is probably stable for a larger range of p than is indicated 
by (5.2). 

Methods with good linearized stability properties were introduced by Strang 
in [l] and [ 191. In [I] he introduced the scheme 

CiPfl = &(L,L, + L,L,)d, (5.3) 

which has optimal stability characteristics as allowed by the CFL condition 

P I W)I, P I A(B)I G 1, (5.4) 

provided L, , L, are optimally stable operators in one space dimension. Its second- 
order accuracy is guaranteed if L, , L, are second-order one-space-dimensional 
operators. The method however was extremely inefficient in terms of function 
evaluations when compared with the methods of Burstein [17], Thommen [16], 
Gourlay and Morris [S]. Gourlay and Morris [19] showed how to implement the 
method (5.3) in practice. A more efficient method was introduced by Strang in [19], 
namely 

co-1 = Lz,PLyLe,BWn, (5.5) 

where Lxj2 is L, applied with a time step $K. Equation (5.5) is second-order 
accurate and optimally stable provided L, and L, are such operators in one space 
dimension. As it stands, however, (5.5) is still less efficient than the methods of 
Burstein et al. Strang however suggested combining operators L,,, at the end of 
a step and the beginning of the next as 

4wLl2 = &I! + O(h3). (5.6) 

By the relation (5.6) the accuracy is maintained and also the stability remains 
optimal. Also it is comparable in efficiency to any other method. Thus all its 
advantages having been pointed out, it is natural that we should extend our 
one-dimensional method in (2.6) and (2.7) to two space dimensions through the 
method (5.5) combining operators through (5.6). Gourlay and Morris [20] showed 
how (5.5) should be implemented in practice but had difficulty in using given 
boundary data when combining operators as in (5.6). Recently McGuire and 
Morris [21] indicated boundary techniques in which these difficulties could be 
overcome and produced workable algorithms, using (5.5) with (5.6) incorporating 
all given boundary data, for the case when L, and L, were two-step Richtmyer 
operators in x-space and y-space respectively. The extension of the paper of 
Gourlay and Morris [20] to cope with our new formulation in (2.6) and (2.7) is 
straightforward enough as is the extension of the boundary techniques of [21]. 
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For reasons of space, we omit details of this procedure. For further details 
see [21]. 

In the Strang scheme (5.5) the one dimensional operators L, and L, solve the 
one-dimensional problems: 

(5.7) 

Hence in considering the dissipation of the overall scheme we can consider the 
dissipation of the one-dimensional operators applied to the one-dimensional 
problems (5.7) and (5.8). Using approximations like (3.13) for each of the Eqs. (5.7) 
and (5.8) a criterion similar to (3.21) can be devised for choosing a in the two- 
dimensional case. Namely, if we take 

and 

f+A+A(x-x)+A(t-t) 
au 1 e 2 e 7 (5.9) 

ag - i B + B&x - x,) + B,(t - t,), au 
(5.10) 

around the point (x, , ye , te) and where the matrices A, A, , Az are evaluated at the 
fixed value of y = ye as are B, B1 , B, at x = X, , then the criterion for choosing 
the parameter a to maximize the dissipation is to choose a so that the eigenvalue of 

(5.11) 

and 

&B1 + qB,B (5.12) 

are as large as possible. In the scalar case withf = g = au2 

af ag 1 --E-u. 
XI-af.4 2 

Then 

and 

A=$,, 1 A =!au, i au, 
2 ax 2 A,=2p 

B=;u,, 1 B =I.!% B =!au, 
2ad 2 2 at ’ 
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so that (5.11) and (5.12) become 

(5.13) 

and 

(5.14) 

A rough idea of how the dissipation in the scheme is determined by the parameter a 
in the scalar case can thus be obtained by considering the sizes of the expressions 
in (5.13) and (5.14). In cases where f and g are vectors it is almost impossible to 
decide what effect a has on the amount of dissipation introduced into the method. 
An indication for the value in that case can only be given by what happens theoret- 
ically in the scalar case and from computational experiments performed on similar 
systems. It is also noted at this point that from Gustafsson’s results, although the 
situation here is not quite the same, using the first-order boundary technique of [21] 
may in fact not destroy the second-order global accuracy of the method. It was also 
suggested in [21] that due to the way in which data are introduced using the first- 
order technique that this is the best technique to use. 

Various numerical experiments were carried out on (5.1) using the scheme (5.5) 
with (5.6) and using generalised LW operators for L, and L, . In all the problems 
we chose f = $u” and g = $P. 

EXPERIMENT 1. 

In this problem we chose initial and boundary values for (5.1) so as to obtain a 
smooth solution. We took the smooth problem of [20] i.e. (5.1) with the smooth 
solution 

(5.15) 

and we assumed that exact initial and lower x and y boundary conditions were given. 
The problem was run for a series of values of a at a series of values of p using the 
backward extrapolation boundary technique of [20] and the two boundary tech- 
niques of [21]. The errors were computed with varying numbers of steps between 
print outs. 

From the results the stability problems of the Gourlay and Morris method of 
introducing given boundary data began to show up in runs with a less than 0.0125. 
The errors for the two boundary techniques of [22] were almost identical so that, 
as noted already in [22], it seems that no loss of accuracy occurs in using the 
first-order boundary technique of [21]. It was also evident that in this smooth 
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problem there existed a value of a, somewhere around 0.125 which would give the 
best results as regards errors. 

EXPERIMENT 2. 

In this experiment we used (5.1) with given discontinuous initial data. The data 
was such that a discontinuity moved in the region of solution parallel to the y axis 
or to the x axis. The problem was that used in [20]. Exact boundary data was 
given on the lower x and y boundaries. Since the boundary techniques of [20] 
limited the use that could be made of the relation (5.6) when using the scheme (5.5) 
we ran the problems only with the boundary techniques of [21]. L, and L, were 
taken as generalized LW operators and the problems were run for various values 
of a with p = 1 .O and with different numbers of steps between print outs. 

From the results it was seen that for very low values of a nonlinearities disrupt 
the solution. For values just below a = 0.25 the shock front lagged about one half 
to a mesh width behind the true shock front. For values of a, equal to 0.25 and 
above, the shock front is at most one half a mesh width ahead of the true one. 
Also the larger the value of a the less are the oscillations behind the discontinuity 
as would be expected from (5.13) and (5.14) analysed in the same way as (4.5). 
Also it was noted that there was very little difference between the values for different 
numbers of steps between print outs. Further results indicated that in fact there 
were smaller oscillations behind the shock front when the first-order boundary 
technique was used than when the second-order technique was used. Thus as in [21] 
the first-order technique, which is simpler to apply anyway, is to be recommended 
for problems of the type used here. 

6. CONCLUDING REMARKS 

From the analysis in Section 3 and the results of experiments 1 in both sections 4 
and 5 for the one- and two-space-dimensional problems respectively, it is seen that 
for smooth problems a best value of a can be found in terms of small errors, simply 
by analysing the truncation error of the method. Thus the best technique in solving 
smooth problems thus appears to be the following. Choose as large a time step as 
the stability (linearized) condition will allow and then choose that value of a which 
minimizes the principal error terms in the truncation error. This argument pre- 
supposes that an expression for the truncation error can be derived, and in fact the 
situation can be much more difficult to analyse than we have considered here. 

In the case of problems with discontinuities the analysis of Section 3 shows that 
the scheme (2.6) and (2.7) solves the original system of differential equations with 
other terms added, the most important of these being terms which are dissipative 
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provided a certain criterion is satisfied. This criterion, that the eigenvalues of the 
matrix in (3.21) are positive, is based on a certain linearization of the truncation 
error terms and is difficult to use except in scalar cases or for very simple systems. 
The larger are these eigenvalues, the more dissipative are the terms governed by 
this matrix. In two space dimensions virtually the same analysis applies since 
Strang’s scheme splits the two space dimensional problem into two one-dimensional 
problems. Thus in this case the criterion for the system of differential equations 
solved using Strang’s scheme, and (2.6) and (2.7), is based on the eigenvalues of 
two matrices of the form (3.21), namely (5.13) and (5.14). For the scalar case of a 
discontinuity passing through the region of computation the analysis gives an 
indication of how, for a fixed value of p, a should be chosen to give dissipation. 
This analysis is borne out in the one space dimensional case by the numerical 
experiments reported in Section 4. Also as was remarked there, the choice of a 
value of p near the stability limit was more critical in giving a good shock profile 
than was the choice of a. Also as remarked the shock profile did not improve much 
for values of p near the stability limit for values of a above 1. For lower values of p 
it required a larger value of a, about 8 in the case of p equal to one half its allowed 
value, for a reasonable shock profile. Moreover since in pratice one wishes to 
progress as quickly as possible in time it follows that in these scalar cases one 
should choose a value of p fairly close to the stability limit then a value of a 
around unity. In Section 5 a similar experiment was carried out in the two-space- 
dimensional case with a value of p half the stability limit and from the results it 
was seen that not much more smoothing was gained by taking a any larger than 
about unity. Also in Section 5 it was deduced from the results of the experiments 
that the first order technique of [21] should be used in preference to the more 
complex second order boundary procedure as this gave better stability results in 
the discontinuous problem and as good error results in the smooth problem. 
When one came to the physical systems of the experiments in Section 4 the analysis 
of Section 3 was almost impossible to apply, although since one of the eigenvalues of 
the matrix (3.21) in these cases was zero, one could indicate that the effect of a might 
not be as marked as in the scalar case. In the experiments it was found that a value 
ofp chosen near the stability limit was more critical in giving good shock profiles 
and that, in such cases, a value of a above unity gave virtually no improvement in 
the shock shape. Thus again the criterion for obtaining good shock shape seems 
to be to choose p close to the stability limit and then to choose a about unity. It was 
also to be noted that the shock position given by the schemes used in both the one- 
and two-dimensional cases was, within at most one-half of a grid spacing, where 
it ought to be as deduced from theoretical considerations. 

Also, in [22], (in the case of the simple problem of Section 4, experiment 2) 
the scheme (2.6) and (2.7) was compared with other methods for a series of values 
of a, and was found to give as good shock profiles as any of the other methods 
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considered, provided p was chosen near the stability limit and a chosen around 
unity. 

The extension of the scheme to higher dimensions is most easily achieved, as 
in [20], using Strang’s formulations. For example we could use 

for three space dimensions and combine operators as in the two-space-dimensional 
case. The computational formulation and incorporation of given boundary data 
are easily deduced from the two-space-dimensional case. 
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